Embedded Resolution of Singularities in Rigid Analytic Geometry

نویسنده

  • Hans Schoutens
چکیده

We give a rigid analytic version of Hironaka’s Embedded Resolution of Singularities over an algebraically closed field of characteristic zero, complete with respect to a non-archimedean norm. This resolution is local with respect to the Grothendieck topology. The proof uses Hironaka’s original result, together with an application of our analytization functor. 0. Introduction and preliminaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-dimensional Resolution of Singularities with Applications to Analysis

We formulate a resolution of singularities algorithm for analyzing the zero sets of real-analytic functions in dimensions ≥ 3. Rather than using the celebrated result of Hironaka, the algorithm is modeled on a more explicit and elementary approach used in the contemporary algebraic geometry literature. As an application, we define a new notion of the height of real-analytic functions, compute t...

متن کامل

Flattening and Subanalytic Sets in Rigid Analytic Geometry

Let K be an algebraically closed field endowed with a complete nonarchimedean norm with valuation ring R. Let f : Y → X be a map of K-affinoid varieties. In this paper we study the analytic structure of the image f(Y ) ⊂ X; such an image is a typical example of a subanalytic set. We show that the subanalytic sets are precisely the D-semianalytic sets, where D is the truncated division function ...

متن کامل

Strengthening the Theorem of Embedded Desingularization

Resolution of singularities is one of the central areas of research in Algebraic Geometry. It is a basic prerequisite for the classification of algebraic varieties up to birational equivalence, since it allows to consider only regular varieties. Hironaka’s monumental work [Hi1] gave a non-constructive, existence proof of resolution of singularities over fields of characteristic zero. Constructi...

متن کامل

LOCAL GEOMETRY OF SINGULAR REAL ANALYTICSURFACESDANIEL GRIESERAbstract

Let V R N be a compact real analytic surface with isolated singularities, and assume its smooth part V0 is equipped with a Riemannian metric that is induced from some analytic Riemannian metric on R N. We prove: 1. Each point of V has a neighborhood which is quasi-isometric (naturally and 'almost isometrically') to a union of metric cones and horns, glued at their tips. 2. A full asymptotic exp...

متن کامل

Lipschitz Geometry of Complex Surfaces: Analytic Invariants and Equisingularity

We prove that the outer Lipschitz geometry of the germ of a normal complex surface singularity determines a large amount of its analytic structure. In particular, it follows that any analytic family of normal surface singularities with constant Lipschitz geometry is Zariski equisingular. We also prove a strong converse for families of normal complex hypersurface singularities in C3: Zariski equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005